Lesson 28. Lagrange Multipliers

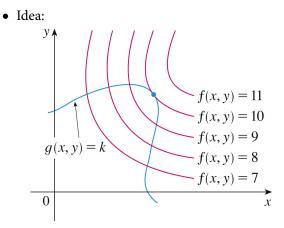
1 Today...

• Optimization with one equality constraint

minimize or maximize f(x, y)subject to g(x, y) = k

2 Lagrange multipliers

• Convention: "maximum" and "minimum" refer to "absolute maximum" and "absolute minimum" respectively



- Maxima and minima occur when the level curves of f(x, y) and the constraint g(x, y) have a common tangent line
- In other words, the gradients of f and g are parallel:

• Method of Lagrange multipliers for optimization with one equality constraint

- To find the maximum and minimum values of f(x, y) subject to the constraint g(x, y) = k:
 - 1. Find all values of *x*, *y*, λ such that

or equivalently

- 2. Evaluate f at all the points (x, y) you found in Step 1.
 - \diamond Largest of these values = maximum value of *f*
 - ♦ Smallest of these values = minimum value of f
- (Assumes extreme values exist and $\nabla g \neq \vec{0}$ on the curve g(x, y) = k)
- Works in a similar way for solving

minimize or maximize f(x, y, z)subject to g(x, y, z) = k **Example 1.** Find the absolute maximum and minimum of $f(x, y) = y^2 - x^2$ on the ellipse $x^2 + 4y^2 = 4$.

Example 2. Find three positive numbers whose sum is 90 and whose product is a maximum.

Example 3. A rectangular box is to be made from 100 m^2 of cardboard. Find the maximum volume of such a box.