Lesson 28. Lagrange Multipliers

1 Today...

- Optimization with one equality constraint

$$
\begin{aligned}
\text { minimize or maximize } & f(x, y) \\
\text { subject to } & g(x, y)=k
\end{aligned}
$$

2 Lagrange multipliers

- Convention: "maximum" and "minimum" refer to "absolute maximum" and "absolute minimum" respectively
- Idea:

- Maxima and minima occur when the level curves of $f(x, y)$ and the constraint $g(x, y)$ have a common tangent line
- In other words, the gradients of f and g are parallel:
\qquad

- Method of Lagrange multipliers for optimization with one equality constraint

- To find the maximum and minimum values of $f(x, y)$ subject to the constraint $g(x, y)=k$:

1. Find all values of x, y, λ such that
or equivalently
2. Evaluate f at all the points (x, y) you found in Step 1 .
\diamond Largest of these values $=$ maximum value of f
\diamond Smallest of these values $=$ minimum value of f

- (Assumes extreme values exist and $\nabla g \neq \overrightarrow{0}$ on the curve $g(x, y)=k$)
- Works in a similar way for solving

$$
\begin{aligned}
\text { minimize or maximize } & f(x, y, z) \\
\text { subject to } & g(x, y, z)=k
\end{aligned}
$$

Example 1. Find the absolute maximum and minimum of $f(x, y)=y^{2}-x^{2}$ on the ellipse $x^{2}+4 y^{2}=4$.

Example 2. Find three positive numbers whose sum is 90 and whose product is a maximum.

Example 3. A rectangular box is to be made from $100 \mathrm{~m}^{2}$ of cardboard. Find the maximum volume of such a box.

